Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes

نویسندگان

  • N. P. Hylton
  • X. F. Li
  • V. Giannini
  • K. -H. Lee
  • N. J. Ekins-Daukes
  • J. Loo
  • D. Vercruysse
  • P. Van Dorpe
  • H. Sodabanlu
  • M. Sugiyama
  • S. A. Maier
چکیده

We illustrate the important trade-off between far-field scattering effects, which have the potential to provide increased optical path length over broad bands, and parasitic absorption due to the excitation of localized surface plasmon resonances in metal nanoparticle arrays. Via detailed comparison of photocurrent enhancements given by Au, Ag and Al nanostructures on thin-film GaAs devices we reveal that parasitic losses can be mitigated through a careful choice of scattering medium. Absorption at the plasmon resonance in Au and Ag structures occurs in the visible spectrum, impairing device performance. In contrast, exploiting Al nanoparticle arrays results in a blue shift of the resonance, enabling the first demonstration of truly broadband plasmon enhanced photocurrent and a 22% integrated efficiency enhancement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?

Plasmonic nanoparticles located on the illuminated surface of a solar cell can perform the function of an antireflection layer, as well as a scattering layer, facilitating light-trapping. Al nanoparticles have recently been proposed to aid photocurrent enhancements in GaAs photodiodes in the wavelength region of 400-900 nm by mitigating any parasitic absorption losses. Because this spectral reg...

متن کامل

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells

A simple optical model for photocurrent enhancement by plasmonic metal nanoparticles atop solar cells has been developed. Our model deals with the absorption, reflection, and scattering of incident sunlight as well as radiation efficiencies on metallic nanoparticles. Our calculation results satisfactorily reproduce a series of experimental spectral data for optically thin GaAs solar cells with ...

متن کامل

Application of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells

To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...

متن کامل

Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells.

We have fabricated titanium dioxide based dye-sensitized solar cells that incorporate corrosion-protected silver nanoparticles as plasmonic optical elements of the photoelectrode. The thickness of the TiO(2) layer separating the dye from the nanoparticles has been systematically varied using atomic layer deposition. Over the range of TiO(2) coating thicknesses examined (2 to 8 nm) there is clea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013